Disputation - Eric Linvill

Publicerad 2017-02-22

Eric Linvill defended his PhD thesis in solid mechanics, “3D Forming of Paper Materials”, on February 10, 2017. Faculty opponent was Professor Leif A. Carlsson, Florida Atlantic University, Boca Raton, FL, USA. Professor Sören Östlund has been Eric’s supervisor.

Abstract

Paper materials have a long history of use as a packaging material, although traditional paper-based packaging is limited in its shape, complexity, and design. In order to better understand the deformation and failure mechanisms during 3-D forming, two experimental studies of paper materials have been conducted. Furthermore, constitutive modeling combined with explicit finite element modeling have been validated against numerous experimental setups and utilized to develop further understanding of 3-D forming processes.

Two experimental studies were necessary to further investigate and model the 3-D formability of paper materials. The combined effect of moisture and temperature on the uniaxial mechanical properties of paper was investigated, providing new insights into how moisture and temperature affect both the elastic and plastic properties of paper materials. Furthermore, the in-plane, biaxial yield and failure surfaces were experimentally investigated in both stress and strain space, which gave an operating window for 3-D forming processes as well as input parameters for the constitutive models.

The constitutive modeling of paper materials and explicit finite element modeling were directed towards two 3-D forming processes: deep drawing and hydroforming. The constitutive models were calibrated and validated against simple (typically uniaxial) mechanical tests, and the explicit finite element models (which utilize the developed constitutive models) were validated against 3-D forming experiments. Hand-made papers with fibers partially oxidized to dialcohol cellulose, which has greater extensibility than typical paper materials, was furthermore characterized, modeled, and 3-D formed as a demonstration of the potential of modified paper fiber products for 3-D forming applications.

Till sidans topp